

Philadelphia University

Faculty of Engineering and Technology, Department of Mechatronics Engineering. Course Syllabus, Second Semester, 2018/2019

Course Details:

Title: Modeling and Simulation (0640327).

Prerequisite: Engineering Analysis 1 (650260) + Dynamics and Vibration (640233)

Credit Hours: 3-credit hours (16 weeks per semester, approximately 45 contact

hours).

Textbook: "System Dynamics", Katsuhiko Ogata, 4th Edition, Pearson Prentice

Hall, 2004.

References: • "Modeling and Analysis of Dynamic Systems", Ramin S.

Esfandiari, Bei Lu- 3rd Edition-CRC Press, 2018

• "System Dynamics", Palm III, William, 2nd Edition, McGraw-

Hill Science, 2009.

description: Modeling definition. Modeling of different physical systems

(mechanical, fluid, thermal and electrical). Differential and Laplace equations. State-space representation. Computer simulation techniques (applications using MATLAB Program). System response and

analysis.

Website: http://www.philadelphia.edu.jo/academics/malkhawaldeh/

Instructor: Dr. Mustafa Awwad Al-Khawaldeh

Email: malkhawaldeh@philadelphia.edu.jo

Office: Engineering building, room 6406. ext: 2540

Office hours: Sunday, Tuesday, and Thursday: 11:10-12:00,

Monday, Wednesday: 10:00-11:000

Course Outlines:

Week	Topic	Assignments
1	Introduction to system dynamics	
2	The Laplace Transform, Inverse Laplace Transformation	
3	Solving Linear, Time-Invariant Differential Equations	
4	Modeling of Mechanical Systems: Introduction to Mechanical Elements,	Assignment .1
5	Rotational motion, Translational-rotational motion.	
6	Modeling of Electrical Systems.	
7	Mathematical Modeling of Electromechanical Systems, dc servomotors	Quiz.1
8	Mathematical Modeling of Operational-Amplifier Systems	
9	Mechanical-Electrical Analogies	
10	Mathematical Modeling of Liquid-Level Systems	
11	Modeling of Pneumatic Systems	Quiz.2
12	Modeling of Thermal Systems	

13	Linearization of Nonlinear Systems	
14	State-Space Approach to Modeling Dynamic Systems	Assignment .2
15	Time-Domain Analysis of Dynamic Systems	
16	Transient-Response Analysis of Second-Order Systems	

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this course, student should:

1.	Understand fundamentals of system dynamics.	
2.	Study the Laplace, inverse Laplace transformation.	
3.	Obtain a mathematical Model of different physical systems (mechanical, fluid, thermal and electrical).	[1,5]
4.	Analyze the transient-response of second-order systems applying Matrix Laboratory (MATLAB).	[1,2,6]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Sub-Exams: The students will be subjected to two scheduled written exams, first exam

and second exam during the semester. Each exam will cover materials

given in lectures in the previous 3-4 weeks.

Quizzes: 3-quizzes of 10-minutes will be conducted during the semester. The

materials of the quizzes are set by the instructor.

Homework Tutorials sheets will be handed out to the students and homework should

and projects: be solved individually and submitted before or on a set due date. Student

may be assigned to present project(s).

Final Exam: The students will undergo a scheduled final exam at the end of the

semester covering the whole materials taught in the course.

Grading policy:

First Exam	20%
Second Exam	20%
Quizzes, projects and Homework	20%
Final Exam	40%
Total:	100%

Attendance policy:

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course.